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Abstract—Heart disease remains the main leading cause of death globally 

and around 50% of the patients died due to sudden cardiac death (SCD). Early 

detection and prediction of SCD have become an important topic of research 

and it is crucial for cardiac patient’s survival. Electrocardiography (ECG) has 

always been the first screening method for patient with cardiac complaints and 

it is proven as an important predictor of SCD. ECG parameters such as RR in-

terval, QT duration, QRS complex curve, J-point elevation and T-wave alternan 

are found effective in differentiating normal and SCD subjects. The objectives 

of this paper are to give an overview of SCD and to analyze multiple important 

ECG-based SCD detection and prediction models in terms of processing tech-

niques and performance wise. Detail discussions are made in four major stages 

of the models developed including ECG data, signal pre-processing and pro-

cessing techniques as well as classification methods. Heart rate variability 

(HRV) is found as an important SCD predictor as it is widely used in detecting 

or predicting SCD. Studies showed the possibility of SCD to be detected as ear-

ly as one hour prior to the event using linear and non-linear features of HRV. 

Currently, up to 3 hours of analysis has been carried out. However, the best 

prediction models are only able to detect SCD at 6 minutes before the event 

with acceptable accuracy of 92.77%. A few arguments and recommendation in 

terms of data preparation, processing and classification techniques, as well as 

utilizing photoplethysmography with ECG are pointed out in this paper so that 

future analysis can be done with better accuracy of SCD detection accuracy. 

Keywords—Electrocardiography, sudden cardiac death, sudden cardiac arrest, 

photoplethysmography 

1 Introduction 

World Health Organization (WHO) has reported that as in 2016, heart diseases es-

pecially ischaemic heart disease (IHD) and stroke remain as the main leading causes 
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of death for 15 years especially in middle-income and high-income countries [1]. As 

in 2015, American Heart Association (AHA) reported that heart disease is the main 

leading cause of death in the United States where IHD is the main contributor with the 

percentage of 43.8% [2]. IHD can cause myocardial infarction (MI) and normally lead 

to sudden cardiac arrest (SCA), which eventually caused sudden cardiac death (SCD) 

if not treated within minutes. Moreover, approximately 50% deaths of the heart dis-

ease patients are due to SCD [3,4]. Due to these facts, SCD detection and prediction 

has become a major research interest since early detection of this event could save 

many lives. 

There are many techniques that can be used to diagnose SCD, electrocardiography 

(ECG) is one of them. ECG features are widely used as the prediction input as it is 

non-invasive and radioactive free diagnostic tool. ECG has been recognized equally 

effective in predicting the SCD event as compared to the other invasive techniques 

[5]. A few studies of ECG-based SCD detection have demonstrated the possibility of 

SCD to be detected as early as 30 minutes or 1 hour before it happens, using heart rate 

variability (HRV) as its main feature [6–8]. 

For SCD prediction, researchers have greatly achieved a promising accuracy, more 

than 90%, as early as six minutes before the event [9–13]. Various linear and non-

linear methods have been used to achieve such accuracy, utilizing the ECG’s features 

in time, frequency and time-frequency domains. Nevertheless, six minutes is still far 

from early, as patient or medical team most likely does not have enough time to re-

spond to the situation. Thus, current available models are still impractical for clinical 

uses due to some limitations such as limited data set, biases in data collection, risk 

categorization issues and non-standardization methods for early detection [4,14–15]. 

This paper highlights the epidemiology of SCD and shows how ECG is important 

in detecting or predicting the event. Potential ECG features for SCD detection has 

been summarized and discussed in this paper. A few significant models of ECG-based 

detection and prediction are compared in terms of data preparation, processing tech-

nique and classification methods. The importance of sample length determination and 

peak detection are emphasized for more reliable output in future analysis. Recom-

mendation are given on the use of new machine learning techniques as well as simul-

taneously analyzing photoplethysmography (PPG) and ECG to improve the perfor-

mance of SCD detection and prediction models. 

2 Sudden Cardiac Death 

SCD can be defined as non-traumatic, non-violent and unexpected fatality from 

SCA within 6 hours of previously witnessed of normal health [16]. Meanwhile, SCA 

happens when the heart is suddenly or unexpectedly stops beating which causes the 

blood to stop flowing to vital organs including the brain. Immediate response or 

treatment is momentously needed to prevent sudden death. SCA is different from 

heart attack and stroke. Heart attack occurs when blood flow to part of the heart mus-

cle is blocked and stroke occurs when blood flow to brain is blocked. However, SCA 

might happens during or after recovery from heart attack. 
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Anyone could have SCA, regardless of their age, gender, with known or unknown 

disease possessed. Figure 1 shows the number of sudden cardiac death per 100 000 

population by age in 2015 provided by American Heart Association [17]. The trend 

demonstrates that the risk factors of SCD is increasing with age. In general, congeni-

tal disorder that specifically affect the myocardium or the electrical system, are the 

cause of death for infants and young children [16]. As for adults with aged over 30 

years, coronary artery disease (CAD) and left ventricles hypertrophy, due to 

longstanding blood pressure, are the main leading causes of SCD [12]. Other causes 

of SCD are valvular heart diseases and ion-channel disorder including Burgada syn-

drome, long QT syndrome (LQTS), short QT syndrome (SQTS), prolong corrected 

QT (QTc), Wolf-Parkinson-White syndrome (WPW) and catecholaminergic poly-

morphic ventricular tachycardia (CPVT). A few guidelines have been made to suggest 

prevention strategies, clinical and patient management to detect or prevent SCD 

[15,16, 18–20]. 

 

Fig. 1. Death rate of sudden cardiac death by age in 2015 [17] 

Around 50% to 70% of SCD occurs due to arrhythmia [21]. Arrhythmia is a mech-

anism of SCD occurrence where electrical disturbance existed in the heart that makes 

the heart beats too slowly (bradycardia), too fast (tachycardia) or with irregular 

rhythms. Normally, SCA is manifesting to abnormal rhythm such as ventricular tach-

ycardia (VT) which might lead to fatal ventricular fibrillation (VFib) [22]. Both of the 

ventricular arrhythmias contribute 84% of SCD compared to bradycardia, 16% [10]. 

Statistic also shows that VT and VFib are also the cause of SCD to the post MI pa-

tients [23]. 

Cardiologist and cardiac electrophysiologists are responsible to the patients that 

have high risk to SCA. Nevertheless, most of the times, SCA is only diagnosed with 

medical test after the patient experienced it. Invasive techniques such as blood test, 

cardiac catheterization and electrophysiology study (EPS) have been used as main 

techniques to diagnose SCA. Imaging machines such as chest X-ray, cardiac magnetic 

resonance imaging (MRI) and computed tomography (CT) scan could provide clear 

and reliable results. However, the imaging test will only be conducted if symptoms 

are clear and abnormal ECG is detected. Therefore, the non-invasive ECG remains as 
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an important platform to diagnose the disease. ECG is proven as important markers as 

studies show that 95% of the SCA patients are having abnormal ECG [22, 24]. Im-

plantable cardioverter defibrillators (ICDs) are recommended for SCD patients to 

correct potentially lethal arrhythmias and reduce the risk of sudden death but it costly 

and impracticable for certain patients [25]. 

3 ECG-based Detection and Prediction Models 

Developing SCD detection or prediction model that solely based on ECG signal 

remains as a challenging task. These models are normally developed in four main 

stages, which include ECG data acquisition, signal pre-processing, signal processing 

and classification of the ECG signals. These processes are simplified as in Figure 2. 

 

Fig. 2. Stages of SCD detection or prediction models 

3.1 ECG data 

SCA is triggered as a result of malfunction of the heart that cause arrhythmia. Ar-

rhythmic ECG data of patients who survived the first cardiac arrest or heart failure 

patients are normally chosen for this kind of analysis since these patients have more 

risk to SCD [21, 23, 24, 26]. ECG recording of these specific group is very challeng-

ing as it took huge effort from medical doctors and patients for years of monitoring. 

For accurate SCA or SCD prediction, continuous ECG recording before a patient 

having cardiac arrest is needed. However, this data is very difficult to get since around 

70% of cardiac arrest happened at patient’s home [2]. Continuous monitoring of pa-

tient wearing portable recording device such as Holter monitor is needed. The only 

available online database for SCD prediction is MIT-BIH SCD Holter databases 

(SDDB) collected by MIT and Boston's Beth Israel Hospital [27]. SDDB consists at 

least 3 to 25 hours of ECG recordings from 23 patients aged 17 to 89 years that expe-

riencing cardiac arrest. Twenty of these patients are having on set Ventricle Fibrilla-

tion. Nevertheless, SDDB only provides two-channel ECG records which causes 

comprehensive 12 leads analysis not possible. Statistically unbalanced analysis due to 

limited subjects, incomplete information of patients and incomplete R to R peaks 

annotation provided by SDDB dataset could be the reason for poor performance anal-

ysis. More SDDB similar databases are urgently needed so that the study can be con-

tinued on more population for more accurate result. Physionet also provides long-term 
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non-arrhythmic ECG database (NSRDB) for normal sinus rhythm. Both NSRDB and 

SDDB are commonly used together for SCD detection or prediction models. 

3.2 Signal pre-processing 

Recorded ECG signals are subjected to noise such as baseline wander, power line 

frequency and motion artefacts from subject movement during recording process. 

High frequency noise is normally removed in analogue circuits which is embedded in 

the recording devices. Low frequency baseline wander is removed by applying digital 

filter through coding. Shen et al [28] applied 1Hz to 50Hz IIR filter to remove base-

line wander in their hardware while Raka et al [22] chose different bandwidth of 

0.5Hz to 45Hz for the filter. Houshyarifar et al [9] and Ebrahimzahed et al [12] used 

two stages moving average filter while Devi et al [6] and Nayan et al [29] have used 

Fast Fourier Transform to identify and remove the noise. Meanwhile, Acharya et al 

[10] have used wavelet technique for denoising processes. Daubechies 6 (db6) mother 

wavelet and discrete wavelet transform were applied up to second level of filtering to 

get the clean signal. 

Once clean signals are obtained, data were segmented into samples. Various sam-

ple length is used to extract the ECG features in the available SCD detection and pre-

diction models. Normally one-minute sample starting right before the event of VFib 

to allow minute-by-minute prediction for up to 3 hours recording [9,10,12,22]. How-

ever, Vanitha and Sheela et al [7,8] have used overlapping 10-minute sample window 

to analyze half an hour SDDB recordings while Devi et al [6] used four minutes sam-

ple duration for the same purpose. These variations could affect HRV analysis on the 

frequency domain. Ordinarily, five-minute sample window is used to extract the low 

and high frequency components and longer window is needed for comprehensive 

assessment in the very low frequency (VLF) range of the signal [30]. Hence, VLF is 

not suggested to be used as the input feature for small size window sample. 

ECG main peak (QRS complex or R peak) is then detected from the sample win-

dow. This is the most important step in pre-processing stage since interval between 

two adjacent R peaks are used in measuring the heart rate and HRV. Wrong or miss-

ing peak detected could affect the analysis and overall performance of the detection or 

prediction models. Pan-Tompkins derivative algorithm [31] of QRS peak detection 

has been widely used by researchers in this field. Other QRS detectors used different 

R peak enhancing techniques such as Shannon energy, Hilbert transform, S-transform 

and wavelet coefficients with the objectives of filtering out unnecessary peaks and 

opting for the best threshold for R peak detection [32–38]. These algorithms are not 

necessarily impeccable for all type of signal since ECG itself is not stationary in na-

ture due to morphological difference of the subjects. For example, Nayan et al [39] 

has evaluated five different peak detectors and found that Behar and Cliffords’ meth-

od gave the best result when using MIMICII and CapnoBase ECG dataset. Despite the 

importance of peak detection, most of the SCD prediction models that used SDDB 

dataset reviewed were not describing the method of peak detection in details. 
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3.3 Signal processing 

The third stage is to extract features from the ECG sample. There are multiple pa-

rameters of ECG signal used as features to differentiate normal and SCD risk patients. 

Abdelghani and Morin [3] have done an outstanding review on these parameters as 

important predictors of SCA. Advantageous and disadvantageous of each parameter 

was properly described and discussed. Summary of these parameters can be found in 

Table 1. Linear and non-linear features can be extracted out from these parameters but 

most of the features are independent. Abdelghani and Morin have suggested to com-

bine these features for multifactorial risk stratification as it is found that heart rate 

turbulence (HRT), J-point elevation as well as T-peak to T-end (Tpe) features have 

the potential to be the next future predictor of SCA. 

Table 1.  Potential ECG predictors of SCA 

ECG  

parameter 

Description[45] Potential SCA prediction 

features 

Relation to arrhythmia 

QT duration Represent total 

duration of ventricu-
lar depolarization and 

repolarization 

Corrected QT (QTc) – QT 

duration over square root of 
RR interval 

Short QTc Syndrome (< 0.39s) is 

very rare but might cause malignant 
arrhythmia 

Prolonged QTc interval (Men>0.45s 

& Women>0.47s) can be independ-
ent SCD predictor [46] 

QRS complex Represent the rapid 

depolarization of the 
both right and left 

ventricles 

QRS complex duration - Broad 

or Wide QRS complexes 
indicates slow depolarization 

QRS complex duration (>0.12s) 

T wave Represent the re-

polarization of the 

ventricles 

T wave alternan – bit to bit 

fluctuation of T wave ampli-

tude 

Abnormal TWA is associated with 

the increased of dispersion in the left 

ventricles 

T-peak to T-end (Tpe) – meas-

ure of dispersion of ventricular 

repolarization 

Prolongation of Tpe interval indi-

cates higher DVR or potential reen-

trant VT 

J point Junction of QRS 

complex and ST-
segment 

Elevation of J-point (by 0.1mV 

in contiguous inferior of lateral 
ECG leads) represents early 

repolarization 

Elevated J point is found in most of 

the inherited Sudden Arrhythmic 
Death Syndrome families.[47] 

RR interval Represent one com-
plete cycle of the 

heart 

Resting Heart Rate (HR) Used to determine arrhythmia. 
(Normal HR are between 60 BPM to 

100 BPM) 

Heart Rate Variability (HRV) – 

the amount of variation in RR 

intervals 

Lower HRV are linked to an in-

crease of ventricular arrhythmia and 

mortality 

Heart Rate Turbulance (HRT) 

– minute changes in ventricle 
cycle length following prema-

ture ventricular contraction 

Proven as a strong indicator for post-

MI patients. HRT studies includes 
relative changes in RRinterval and 

rate of changes of RRinterval back 

to baseline 

 

SCD predictor models available used only MIT-BIH SCD Holter database. The da-

tabase is limited to two-channel ECG lead analysis. Features such as J-point elevation, 

fQRS for early repolarization detection or QT dispersion cannot be analyzed as multi-
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ple leads are needed for the analysis. Hence, mean resting heart rate and HRV have 

become the main features to predict SCD. HRV started to be used in cardiology by 

Axelrod et al in 1980 [40]. Kleiger et al [41] and Bigger et al [42] have proven that 

HRV are related to severe ventricular arrhythmia and sudden death. Van 

Hoogenhuyze et al [43] show the importance of mean and standard deviation values 

of HRV as they found that low HRV values are associated with patients who experi-

ence SCD. In 1996, Voss et al [23] have used non-linear dynamic method of HRV 

data to classify normal, low risk and high risk patients to SCD while Malik et al [44] 

shows HRV can be accepted as an independent predictor of SCD after Acute Myocar-

dial Infarction (AMI). These findings have motivated more studies to explore HRV in 

modelling SCD predictors. Standard measurement of HRV related linear parameters 

in time domain are given in Equation (1) to Equation (6). 

 

Mean of RR interval 

  (1) 

 

Standard Deviation of RR interval 

  (2) 

 

Square root of the mean of the sum of squares of differences between adjacent 

   (3) 

 

Standard deviation of differences between adjacent RR intervals 

  (4) 

Where 

  (5) 

  (6) 

 

In frequency domain, non-linear features of HRV power spectrum density are used 

as another common feature of SCD predictor. The frequency components are grouped 

into three parts, which are high frequency (0.15-0.4Hz), low frequency (0.04Hz-

0.15Hz) and very low frequency (0-0.04Hz). The high frequency components repre-
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sent synchronization between respiration cycles and HRV while low frequency com-

ponents represent oscillations relation of the regulation of blood pressure and vasomo-

tor [48].  Ratio of HF and LF is also used as additional non-linear feature for the anal-

ysis. 

Non-linear information contains in ECG are equally important to the linear infor-

mation as ECG itself is a non-linear signal. Ebrahimzahed et al [13] extracted the non-

linear information of HRV using smoothed pseudo Wigner-Ville transform (SPWVT) 

and segmented the signal into 15 windows based on the frequencies group. Combina-

tion of these features to the other classical feature have significantly increase the clas-

sification accuracy of their model. The study is extended to four-minute prediction 

prior to SCD event by using other non-linear methods, Detrended Fluctuation Analy-

sis (DFA) and Poincare plot (graphical plot of correlation between successive RR 

intervals). Acharya et al [10] have used 18 non-linear features from wavelet coeffi-

cients of recurrence plot, fractal dimensions, Hurst’s exponent, approximate entropy, 

sample entropy, DFA as well as correlation dimension (CD) for four-minute predic-

tion of SCD [10, 11]. Houshyarifar et al [9] extended the study to six-minute predic-

tion using two linear and six non-linear bipsectrum features and produced slightly 

better prediction accuracy compared to Acharya at fourth minute prediction. 

3.4 Classification and prediction performance 

Linear and non-linear features extracted from ECG samples are classified into two 

categories, normal and have risk to SCD. Various machine learning techniques are 

applied in the classification to obtain the specificity, sensitivity and accuracy of the 

prediction model. Specificity refers to the ability of the prediction model to classify 

normal features as normal while sensitivity refers to the ability of the model to detect 

abnormal features as abnormal [49]. Accuracy can be determined by using both speci-

ficity and sensitivity data to show overall performance of the system. This is shown in 

Figure 3. 

 

Fig. 3. Specificity, sensitivity and accuracy determination of normal and abnormal signal 
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Multiple classifiers such as Linear Discriminant Analysis (LDA), Support Vector 

Machine (SVM), Artificial Neural Network (ANN), k-Nearest Neighborhood (kNN) 

and Decision Tree (DT) methods are used to optimize the classification output. 

Acharya et al. even introduced sudden cardiac death index (SCDI) to classify healthy 

and SCD subjects using a single number value based on selected non-linear features. 

For performance comparison, nine similar researches that used SDDB are selected in 

this paper. Most of them used HRV features of one-minute sample window. Table 2 

simplifies all the researches in terms of data used, feature extracted, classification 

techniques as well as the best prediction accuracy obtained. 

Based to Table 2, more than 90% prediction accuracy are achieved with non-linear 

features compared to solely depending on linear feature as used in [4], [13] and [22]. 

Best accuracy of 99.73% and 98.68% was recorded at first minute and second minute 

prediction, which showed higher fluctuation of heart rate right before the event of 

SCA. Raka et al [22] have tested only HRV features on 3 hours recording of MIT-

BIH SCD Holter Database and obtained maximum accuracy 83.9% at 2 minutes prior 

to the SCA event. However, they have found reasonable prediction accuracy of 

around 80% at 40 minutes to 50 minutes time, which should provide patient enough 

time to respond to the predicted situation. Currently, the best prediction time is only at 

6 minutes before SCD event with confidence classification accuracy of 92.5% by 

Houshyarifar et al [9].  

A few preliminary studies showed that SCD can be detected as early as thirty 

minutes or one hour before the event. Vanitha and Sheela et al [7,8] tested HRV fea-

tures on 30 minutes signals using 10 minutes overlapping samples and obtained up to 

90% accuracy using SVM and Hybrid classifier. Devi et al [6] proved that there are 

significant differences on HRV values of normal and SCD patients after studying a 

total of one-hour duration of the data using HRV and Poincare plot features. 

Table 2.  Comparison of technique and performance of SCD detection and prediction models 

that used MIT-BIH SCD Holter database 

Author Data Features Classifier Best Accuracy 

Sheela et al,[8] 

2014 

20 SDDB, 20 NSRDB 

Duration: 30 min  

Sample window: 10 
min overlap 

5 HRV features  

(SDNN, RMSSD, LF, HF, 

LF/HF) 

SVM with RBF 

kernel 

88% accuracy 

Vanitha et al,[7] 

2014 

20 SDDB, 20 NSRDB 

Duration: 30 min  
Sample window: 10 

min overlap 

5 HRV features  

(SDNN, RMSSD, LF, HF, 
LF/HF) 

Hybrid classifi-

er (pNN, kNN, 
SVM) 

90% accuracy 

Devi et al,[6]  

2017 

23 SDDB x2, 

18 NSRDB x2 

 
Duration: 1 hour 

Sample window: 4 min 

6 HRV features 

(RRm, SDNN, RMSSD, 

LF, HF, LF/HF) 
2 Poincare Plot  

(SD1 & SD2) 

kNN Significant different 

on all features value 
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Raka et al,[22] 
2017 

10 SDDB, 10 NSRDB 
Duration: 3 hours 

Sample window:  

1 min  

4 HRV features 
(RRm, RR interval, 

RMSSD, SDSD) 

LDA, 
Linear SVM,  

Non-linear fine 

gusion SVM 

3 h = 78.4%  
2 h =77.8% 

1 h = 77.1% 

50 min = 80.6% 
10 min = 82.3% 

6 min = 78.6% 

5 min = 78.5% 
4 min = 78.5% 

3 min = 82.6% 

2 min = 83.9% 
1 min = 81.2% 

Houshyarifar et 
al,[9] 

2016 

23 SDDB, 18 NSRDB 
Duration: 6 min 

Sample window:  

1 min 

2 HRV features (RMSDD, 
SDNN) 

6 bispectrum features 

(non-linear higher order 
spectral (HOS)) 

LDA, SVM,  
kNN 

4 min = 94.46% 
5 min = 91.07% 

6 min = 92.77% 

Acharya et 

al,[10] 
2015 

20 SDDB, 18 NSRDB 

Duration: 4 min 
Sample window:  

1 min 

18 non-linear features 

from wavelet coefficients 
1. Fractal Dimension 

2. Hurst's Exponent 

3. Approximate entropy 
4. Sample Entropy 

5. Detrended Fluctuation 

Analysis 
6. Correlation Dimension 

Decision tree, 

kNN, 
SVM (Polyno-

mial & RBF 

Kernel Fc, 
SCD Index 

(SCDI) 

1 min = 92.11% 

2 min = 98.68% 
3 min = 93.42% 

4 min = 92.5% 

Acharya et 
al,[11] 

2015 

20 SDDB 
18 NSRDB 

Duration: 4 min 

Sample window: 1 min 

Non-linear methods 
(Recurrence Quantification 

Analysis (RQA) & Entro-

pies) 

DT, 
KNN, 

PNN, 

SVM 

1 min = 92.1% 
2 min = 86.8% 

3 min = 81.5% 

4 min = 86.8% 

Ebrahimzahed et 

al,[12] 
2014 

35 SDDB  

35 NSRDB  
Duration: 4 min 

Sample window: 1 min 

9 HRV features 

(RRm, SDNN, RMSSD, 
SDSD, PNN50, VLF, LF, 

HF, LF/HF) 

11 Linear TF domain 
features (SPWVT of HRV) 

4 Non-linear features 

(3 Poincare and 1 DFA)  

kNN, 

ANN 

1 min = 99.73% 

2 min = 96.52% 
3 min = 90.36% 

4 min = 83.93% 

Ebrahimzahed et 

al,[13] 

2011 

35 SDDB  

35 NSRDB  

Duration: 2 min 
Sample window: 1 min 

7 HRV features 

(RRm, SDNN, RMSSD, 

SDSD, PNN50, VLF, LF, 
HF, LF/HF) 

8 Linear TF domain fea-

tures (SPWVT of HRV) 

kNN, 

ANN 

Classical features 

1 min = 72.83% 

2min = 72.38% 
 

TF features 

1 min = 99.16% 
2 min = 91.23% 

4 Discussion and Recommendation for Future Works 

Current performance of the available SCD prediction models as per our knowledge 

are still poor. One of the reasons is that SDDB is the only available database used. 

Analysis can only be done using the two channels of ECG signal provided where 

multiple leads analysis is impossible. Generating new databases is highly recom-

mended. Important information on clinical, biological, electrophysiological, social 

and psychological variables should be included since these are important variables 

that could help in predicting SCD [50]. Development of Internet of things (IoT) based 
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portable and wearable device similar to Holter Monitor is highly encouraged to assist 

the data collection. 

Sample length determination among the studies is varies and not standard. It is 

suggested to use five-minute sample window since it is adequate to extract HRV fea-

tures. Peak detection method should be described in detail as it is the most importance 

steps before doing any analysis. Samples with incorrect peaks should be removed 

from the analysis to avoid false classification. In term of processing technique, studies 

have shown that combination of non-linear features to linear features of HRV could 

greatly increase the classification accuracy. Combination of other ECG parameters 

such as heart rate turbulence, J-point elevation and Tpe characteristics to HRV can be 

done as they have the potential to be a good predictor of SCD. 

As for classification, Deep Learning (DL) method such as Convolution Neural 

Network (CNN) is more popular nowadays in classifying ECG signal compared to the 

usual supervised learning methods described in Table 3 [51]. Instead of manually 

extracted the ECG features, DL algorithms are able to transform a higher-level com-

plexity input in its subsequent layers of processing unit in producing the predicted 

output. Recurrent neural network (Recurrent NN) also has been used to detect ar-

rhythmias, analyze wave fluctuation and relates it to the cardiovascular events [52]. 

Predicting SCD using these techniques could be helpful in future works. 

Combination of other physiological marker with ECG such as photoplethysmogra-

phy (PPG) might also contribute to better detection and prediction of sudden cardiac 

death. This combination is rarely found in cardiovascular disease diagnosis [53]. Uti-

lizing simple, portable, low cost and non-invasive biomarker like PPG is surely de-

manded as it is well recognized for analyzing oxygen saturation, arterial pulse, heart 

rate, blood flow, vessel elasticity as well as tissue viability [54,55]. Pulsatile time 

series information is effective to differentiate normal sinus rhythm with atrial fibrilla-

tion using RMSDD, Shanon Entropy and Sample Entropy features [56]. 

PPG also have been used to classify multiple cardiac arrhythmia. Paradkar et al 

[57] have used PPG alone in classifying five types of malignant arrhythmia on 

Physionet Challenge 2015 dataset. At the same time, Mahri et al [58] have utilized 

second derivative PPG (SDPPG) to classify 32 MI and 32 healthy control subjects 

while Banerjee et al [59] used PPG to extract morphological features in classifying 

coronary artery disease. Muhajir et al [60] have evaluated finger PPG fitness index 

among young women with cardiovascular risk factor and found the correlation be-

tween aortic stiffness and CVD risk factors using pulse wave velocity. 

These studies showed the feasibility of PPG to be used for SCD detection since it is 

related to equivalent arrhythmic event that utilizing HRV features. However, PPG 

alone might be insufficient for complex SCD analysis as it is unable to differentiate 

electrically narrow-complex beats with wide complex beats [61]. Hence, combination 

of both ECG and PPG are needed for SCD detection and prediction. Polania et al [62] 

have successfully used both ECG and PPG signals to differentiate ventricular prema-

ture contraction (VPC) and VT from normal sinus rhythm using the HRV method as 

both arrhythmias might lead to VFib or SCD. Recently, Radha et al [63] also use 

single lead ECG and PPG to get Pulse Arrival Time (PAT) value in predicting myo-

cardial ischemia with 100% accuracy. 
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5 Conclusion 

This paper highlighted the importance of early prediction of SCD in order to pro-

vide enough time for patients in preventing, responding or receiving proper treatment 

by the time they are experiencing cardiac arrest. Multiple parameters of non-invasive 

ECG in detecting and predicting SCD have been summarized. Linear and non-linear 

features extracted from the parameters are combined to classify healthy and SCD 

subjects with better accuracy. Among these features, HRV is found as an important 

independent SCD predictor as it provides a method for assessing cardiac autonomic 

control. A five-minute sample window is suggested as to minimize loss of infor-

mation in frequency component analysis of HRV. Combination of HRV with other 

features such as HRT, J-point elevation and Tpe characteristic should increase the 

prediction time to SCD. For the time being, current performances of all SCD predic-

tion models are still poor, where confidence prediction accuracy is only found at sixth 

minute prior to the SCD event. Deep learning method such as CNN and Recurrent NN 

are recommended to detect and predict the event. Relation of PPG and ECG to SCD 

can be explored as PPG have the potential to detect arrhythmia. 
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