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Abstract

Corrosion in carbon-steel pipelines leads to failure, which is a major cause of breakdown

maintenance in the oil and gas industries. The acoustic emission (AE) signal is a reliable

method for corrosion detection and classification in the modern Structural Health Monitoring

(SHM) system. The efficiency of this system in detection and classification mainly depends

on the suitable AE features. Therefore, many feature extraction and classification methods

have been developed for corrosion detection and severity assessment. However, the

extraction of appropriate AE features and classification of various levels of corrosion utilizing

these extracted features are still challenging issues. To overcome these issues, this article

proposes a hybrid machine learning approach that combines Wavelet Packet Transform

(WPT) integrated with Fast Fourier Transform (FFT) for multiresolution feature extraction

and Linear Support Vector Classifier (L-SVC) for predicting corrosion severity levels. A Lab-

oratory-based Linear Polarization Resistance (LPR) test was performed on carbon-steel

samples for AE data acquisition over a different time span. AE signals were collected at a

high sampling rate with a sound well AE sensor using AEWin software. Simulation results

show a linear relationship between the proposed approach-based extracted AE features

and the corrosion process. For multi-class problems, three corrosion severity stages have

been made based on the corrosion rate over time and AE activity. The ANOVA test results

indicate the significance within and between the feature-groups where F-values (F-value>1)

rejects the null hypothesis and P-values (P-value<0.05) are less than the significance level.

The utilized L-SVC classifier achieves higher prediction accuracy of 99.0% than the accu-

racy of other benchmarked classifiers. Findings of our proposed machine learning approach

confirm that it can be effectively utilized for corrosion detection and severity assessment in

SHM applications.
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Introduction

Corrosion is a natural occurrence that can be defined as the decomposition of materials as a

result of an environmental interaction. The resulting severe material loss leads to integrity,

productivity, and financial losses [1]. Singh et al in [1] grouped corrosion’s consequences into

three broad categories: safety, environmental impact, and economic impact. The structures

may fail due to severe corrosion, resulting in a multitude of severe consequences. Numerous

types of corrosion can occur as a result of the transportation or storage of hazardous items in

corrosion-prone structures, and prior corrosion-related failures have demonstrated that they

can have a significant impact on the environment and necessitate costly mitigation

approaches. Corrosion has a number of economic consequences (for example, the expenses

associated with repairing and maintaining corroded materials, as well as the additional costs

associated with utilizing materials or protection methods to extend the lifetime of an asset).

AE is a passive Non-Destructive Testing (NDT) technology that offers a better potential in

corrosion detection and monitoring. Numerous methods for detecting and assessing various

types of corrosion on carbon steel materials have been published in the literature. A method

based on hydrogen evolution has been devised to monitor the pitting corrosion of stainless-

steel using AE in [2]. Patil et al. [3] designed a technique for evaluating accelerated corrosion

tests based on AE. In addition, Prateepasen et al. [4] utilized acoustic emission to detect pitting

corrosion. Accelerated corrosion testing was performed on SS-304 specimens that had been

ground with silicon carbide paper, rinsed with distilled water, and dried in the air in the pro-

posed technique. Droubi et al. [5] suggested a method for predicting corrosion using AE. Time

domain analysis were performed on AE signals and discovered a link between AE Energy and

corrosion. Saenkhum et al. [6] classified corrosion using acoustic emission and an Artificial

Neural Network (ANN). Four characteristics experiment-derived AE energy, amplitude, rising

time, and count were employed as inputs to a neural network. The testing phase of the neural

network has a very low rate of misclassification and an excellent capacity for generalization,

with training accuracy of 96.41% and testing accuracy of 94.35%. De Masi et al. [7] used a Fit-

ting Neural Network (FNN)-based regression approach to predict the rate of corrosion, metal

loss, defect area, and defect count in subsea pipelines. Liao et al. [8] employed hybrid machine

learning algorithms such as Genetic Algorithm (GA) optimized Back-Propagation Neural Net-

work (BP-NN) and Particle Swarm Optimization (PSO) optimized BP-NN to predict the

numerical corrosion rate of gas pipelines during the internal corrosion assessment process.

For corrosion rate prediction, the network was trained with seven input neurons, fourteen hid-

den layer neurons, and a single output neuron. On the basis of its lowest absolute error, GA

optimized BP-NN demonstrated the best corrosion prediction rate compared to other tech-

niques. In 2009, Piotrkowski et al. [9] used wavelet analysis (WA) and bi-spectrum analysis

(BA) on AE signals to identify and evaluate corrosion damage in galvanized steel. Griffin et al.

[10] used both the Short-Time Fourier Transform (STFT) and the Wavelet-Packet Transform

(WPT) on AE signals extracted during burn and chatter anomalies. In [11], Zhao et al. used

wavelet packet analysis (WPA) and support vector machines (SVM) to classify AE signals in

composite laminates. In [12], Van Dijck and Van Hulle identified corrosion absence, uniform

corrosion, pitting, and stress corrosion cracking using a hybrid filter-wrapper genetic algo-

rithm and a naive Bayes classifier. Yu and Zhou suggested a method for classifying AE signals

resulting from oil storage tank damage in [13], combining SVM and an optimized grid search

algorithm, whereas Li et al. in [14] used K-means clustering to classify AE signals generated by

304 stainless steel during the stress corrosion process. Hybrid machine learning approaches

are utilized that combines corrosion detection using AE signals from accelerated corrosion

testing with a machine learning algorithm to provide an accurate prediction of corrosion
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severity levels in [15, 16]. The AE technique is introduced in [17] to monitor the corrosion

process and cracking behaviour in large-scale reinforced concrete (RC) pile specimens in the

marine environment. Moreover, AE-based SHM technique in [18] is applied to improve the

level of safety in aircraft. However, some of the issues are being faced or may be faced while

bringing in corrosion into the SHM framework for aircraft are highlighted. These studies, with

the exception of few of them, are based on supervised learning algorithms. Thus, structure-

borne AE assessed using supervised learning-based algorithms are reliable methods for corro-

sion detection and evaluation. Nevertheless, machine learning techniques for feature extrac-

tion and classification of corroded AE signals are still in their infancy.

There are several categories of AE features (statistical, time-domain and frequency-domain)

extracted by different methods in order to utilize them for corrosion detection and severity

level prediction. However, the existing methods are not addressed to extract features from the

multiresolution signal that may reduce the features variability and resulting degrade the diag-

nosis ability in the corrosion detection and assessment system. This article aims to develop a

new hybrid machine learning approach including WPT integrated with FFT to process AE sig-

nals and extract three categories of AE features, and the supervised learning model L-SVC to

predict the severity levels of corrosion. Initially, the AE signal is acquired from the LPR test

experiment using the AEWin system and categorized the severity of corrosion into three dif-

ferent classes based on corrosion rate over various time spans and corrosion activity. Then, the

extracted signals are pre-processed and decomposed signal by WPT to generate a large num-

ber of time-frequency multiresolution wavelet packets based on a defined decomposition level

to extract statistical and time-domain features for three different classes. Afterwards, the

decomposed wavelet packets in each level are transformed into the frequency domain by FFT

to extract the frequency-domain features for all classes. Then, the L-SVC is built with the opti-

mal parameters and trained utilizing our extracted feature sets for three classes. Finally, the

trained model is tasted with our test feature sets to evaluate the prediction performance. Vari-

ous performance indicators are used to measure the performance of our model as well as well-

known benchmarked models.

Materials and experiments

This section explains the various features and characteristics of the given specimens. The

details of the experimental tests for mechanical and AE signal acquisition are discussed. The

potential applied was in the range ±0.25 V respect to the reference electrode.

Linear Polarization Resistance (LPR) test

LPR is an electrochemical test commonly used in material corrosion studies to gain corrosion

rate data at a potential range between ±0.01 V respect to the reference electrode. The measure-

ment was carried out by using an ACM Gill potentiostat. In the three-electrode system, a car-

bon steel substrate with a dimension of 150 x 50 x 2 mm is assigned as the working electrode

(WE), a stainless steel rod as the counter electrode (CE), while Ag/AgCl is assigned as the refer-

ence electrode (RE) in the system. The electrolyte used in this work is 3.5 wt.% of sodium chlo-

ride. A portion of the substrate is exposed to the electrolyte with a surface area of

approximately 2.86 cm2. The exposed area is isolated by using an acrylic rod. Details of the

connection of this sample setup are shown in Fig 1. The acoustic emission sensor was attached

to the other end of the substrate. Moreover, Fig 2 illustrates the complete diagram of the whole

system during data acquisition. During the polarization, the DAQ system of potentiostat

recorded the corrosion data, including corrosion rate, for up to 72 hours.
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Acoustic emission signal acquisition

AE signals were acquired continually throughout the test. Fig 3 describes the schematic flow of

AE data acquisition using the LPR test. Signals were monitored using four data collecting

channels and an environmental noise test. Magnetic clamps are used to secure the sensors to

the specimen. Between the sensors and the specimen, a coupling agent is used to significantly

increase the amount of acoustic energy transmitted from the specimen to the sensor. Physical

Acoustics Corporation (USA) supplied the entire system, including the sensors. Prior to data

collection, the Pencil lead break process was used to calibrate and guarantee that all sensors

received the maximum amplitude from the lead break. The acquisition configuration used the

Fig 1. Corrosion test set-up, connected to AE sensor and potentiostat for acquisition.

https://doi.org/10.1371/journal.pone.0261040.g001

Fig 2. Carbon-steel LPR test experimental system.

https://doi.org/10.1371/journal.pone.0261040.g002
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values for peak definition time (PDT), hit definition time (HDT), and hit lockout time (HLT),

as well as a threshold value and sample rate, as stated in Table 1. The sensors were placed on

the pipe specimen as illustrated in Fig 1.

R1.5I-AST sensors are employed to acquire the AE signal and provide components for

high-sensitivity data acquisition and recording in this work. Table 2 summarizes the sensor

Fig 3. Schematic flow diagram of LPR test during AE data acquisition.

https://doi.org/10.1371/journal.pone.0261040.g003
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specification. Before and during the experiment, data on the normal (ground-truth) and

abnormal (cathodic charging) AE signals were collected, respectively. Charging and data col-

lection take around 146 seconds in total, with a sampling rate of 1μs per sample. Thus, each

AE hit generated a 1024-line data set. AEwin software was used to acquire and record the data,

which included all waveform features. The wavelet packet transform, empirical mode decom-

missioning, and other techniques were used to evaluate and process the AE features.

Methodology of the AE features extraction and classification

approach

The acquired AE signals are used as input to the proposed signal feature extraction and classifi-

cation approach for carbon-steel corrosion assessments. The overall flowchart of the proposed

approach is presented in Fig 4.

AE signal preprocessing

The AE raw signal is usually recorded as an individual file containing a single waveform at a

specific time. The recorded files over time are appended in a matrix form in the preprocess-

ing stage in order to be processed further. According to the study in [19], typically, AE raw

signals oscillate around zero, resulting in a zero mean. However, the obtained AE raw data

exhibit a bias consisting of an offset likely caused by electrical noise generated by the AE sen-

sor system. It is needed to remove bias during the preprocessing phase by shifting the AE

raw signals to achieve a zero mean signal, as depicted in Fig 5. For each AE raw signal (Fig

5), the average value of the signal was determined and subtracted from the original signal to

obtain the characteristic AE raw signal oscillating around zero in the unbiased shifted AE

signal. Finally, the shifted original signals are cleaned based on our previously published

denoising method in [20].

Features of acoustic emission signal

The AE features are mostly utilized to examine the structures, assess the materials and monitor

the manufacturing processes. The AE features can mainly be divided into three categories, as

detailed in Fig 6.

Table 1. AE parameters.

Parameter Value

Hit definition time (HDT) 2000 μs

Peak definition time (PDT) 1000 μs

Hit lockout value (HLT) 500 μs

Threshold value 40 dB

Sample rate 1 μs per sample

https://doi.org/10.1371/journal.pone.0261040.t001

Table 2. Specifications of R1.5I-AST sensor.

Parameter Value

Peak sensitivity, ref (V/(m/s)) 124 dB

Operating frequency Range 5-20 kHz

Resonant Frequency, ref (V/(m/s)) 14 kHz

https://doi.org/10.1371/journal.pone.0261040.t002
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The signal mean, standard deviation, skewness, and kurtosis were selected as statistical

analysis features and peak-to-peak amplitude as well as signal rms energy were chosen as time-

domain features to be extracted from the pre-processed AE signals. Moreover, the angular fre-

quency, mean frequency, and mean frequency power were considered as frequency-domain

features to be extracted from the FTT-transformed AE signals. These features make up the ele-

ments of analysis pattern vectors to be in-putted into pattern recognition paradigms for deci-

sion making on materials’ health acceptability.

Wavelet packet decomposition

Wavelet packet decomposition subdivides the frequency band into many levels and further

subdivides the high-frequency portion of the band that is not subdivided by wavelet analysis.

Wavelet packet decomposition selects the appropriate frequency band adaptively to match the

signal’s spectrum properties, which enhances time frequency resolution. According to the ran-

dom time frequency resolution, the wavelet packet decomposes the signal into the correspond-

ing frequency band components. The wavelet packet approximation formulation is obtained

Fig 4. A flowchart of the proposed AE features extraction and classification approach.

https://doi.org/10.1371/journal.pone.0261040.g004
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by performing a multi-resolution analysis on the square integrable real space as following.

L2ðRÞ ¼ �W� 1 �W0 �W1� ¼ �f2zWj; 8 2 Z ð1Þ

where the space of the wavelet function is Wj, the scale factor is j,� is the orthogonal sum of

the two subspaces. Eq 1 means that the space of the real number, L2(R), is the orthogonal sum

of the wavelet subspace Wj where j 2 z according to different scale factors. Wavelet packet

analysis can improve the frequency resolution by subdividing the frequency band into binary

form.

A signal’s WPT generates packets of coefficients calculated by scaling and shifting a speci-

fied mother wavelet, which is a prototype function. As a result, at the WPT’s first level, the

original signal S is divided into two frequency band packets referred to as approximation, A1,

and detail, D1. At the 2nd level, each approximation and detail packet are again split into fur-

ther approximations, AA2 and AD2, and details, DA2 and DD2, and the process is repeated in

the next levels, generating other decomposition packets as presented in Fig 7. The mother

wavelet employed for WPT of the pre-processed AE signals is a Coefficient 5, denoted by

“coif5”. The decomposition was performed up to the 5th level, yielding 62 packets. For each

packet, 4 statistical, 2 time-domain and 3 frequency-domain features were calculated.

Linear Support Vector Classifier (L-SVC)

Support Vector Classifier (SVC) is a supervised machine learning technique which constructs

a hyperplane or set of hyperplanes in a high or infinite dimensional space. It can be utilized for

classification, regression, clustering, and detection tasks. Generally, the optimum clustering is

achieved while the hyperplane has the maximum distance to the nearest training data-points

of any class. The distance between the nearest training data points of a class and the data points

of another class is also known as the functional margin. In general, a large margin introduces a

small generalization error of the classifier. Fig 8 presents the decision function of the linear

clustering problem for two classes.

Considering a binary classification problem with a training dataset, where given training

set X 2 Rn
in a set of classes Y = {F1,F2, � � �, Fk} where k� 2 is an integer. Binary and multi-

Fig 5. Bias original and unbiased shifted AE signals.

https://doi.org/10.1371/journal.pone.0261040.g005
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class classification depend on the k value, k = 2 is considered as binary and k> 2 is referred as

multi-class classification. SVC is one of the most promising algorithm which can be used for

both classes classification whereas the Support Vector Machine (SVM) works well for binary

class classification [21]. Based on independently and identically distribution, the training set is

as in Eq 2.

T ¼ fðx1; y1Þ; ðx2; y2Þ; � � � ðxn; ynÞg 2 ðX � YÞn ð2Þ

where xi and yi are the input and output training vectors of a same class and i = 1, 2, � � �, n.

The standard SVC framework in linear programming formulation is explained briefly here

before formulating the L-SVC framework [21]. Based on Eq 2, we solve the binary classifica-

tion problem where input support vector xi 2 X and output support vector yi 2 Y = {−1, 1}.

The main objective of SVC framework is to find a hyperplane (w�x) + b = 0, where the largest

margin w 2 Rn and the independent term b 2 R. The computed hyperplane is utilized to sepa-

rate two classes with the largest margin in binary classification. The correct prediction is given

for most observations by sign (wT � F(x) + b). Standard SVC solves the primal problem as

Fig 6. Different types of AE features.

https://doi.org/10.1371/journal.pone.0261040.g006
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follows:

min
w;b;x

1

2
kwk2

þ C
Xn

i¼1

xi ; ð3Þ

s:t: yiðw
T � FðxiÞ þ bÞ � 1 � xi ; ð4Þ

xi � 0 ; i ¼ 1; � � � ; n ð5Þ

In Eq 3, we maximize the margin w by minimizing (kwk2 = wT w). The misclassification is

considered within the margin boundary while incurring a penalty where the margin distance

Fig 7. Five-layers wavelet packet decomposition tree.

https://doi.org/10.1371/journal.pone.0261040.g007

Fig 8. Clustering processes of Support Vector Classifier (SVC).

https://doi.org/10.1371/journal.pone.0261040.g008
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and penalty term are defined as ξ and C correspondingly. Based on Eq 4, The perfect predic-

tion is considered when the value yi (wT � F(xi) + b) is greater than or equal to 1.

Now, we formulate binary class classification problem for L-SVC which is utilized in our

work. Based on the training set in Eq 2, we define the input vector xi 2 X and yi 2 Y = {1, 2} as

well as find a matrix W = (w1, w2) which satisfied the Eqs 6 and 7.

ðw1 � FðxiÞÞ � ðw2 � FðxiÞÞ yi ¼ 1; ð6Þ

ðw2 � FðxiÞÞ � ðw1 � FðxiÞÞ yi ¼ 2; ð7Þ

where y = f(x) = arg maxr=1,2 (wr � F(x)) and its optimization problem is formulated as in Eqs

8, 9, 10 and 11.

min
w;x

1

2
kw1k

2
þ kw2k

� �
þ C

Xn

i¼1

xi ð8Þ

s:t: ðw1 � FðxiÞ � w2 � FðxiÞÞ � 1 � xi ; yi ¼ 1 ð9Þ

ðw2 � FðxiÞ � w1 � FðxiÞÞ � 1 � xi ; yi ¼ 2 ð10Þ

xi � 0 ; i ¼ 1; � � � ; n ð11Þ

Accordingly, we can formulate our L-SVC framework with kernel.

min
a1 ;a2 ;x

�
Xn

i¼1

ða1

i þ a
2

i Þ þ C
Xn

i¼1

xi ð12Þ

s:t:
Xn

i¼1

a1

i Kðxi; xjÞ �
Xn

i¼1

a2

i Kðxi; xjÞ � 1 � xi ; yi ¼ 1 ð13Þ

Xn

i¼1

a2

i Kðxi; xjÞ �
Xn

i¼1

a1

i Kðxi; xjÞ � 1 � xi ; yi ¼ 2 ð14Þ

ari ; xi � 0 ; i ¼ 1; � � � ; n ; r ¼ 1; 2 ð15Þ

where the n by n positive semi-definite matrix is defined as Qij� yi yj K (xi, xj) and K (xi, xj) =

F(xi)TF(xj) is considered as the kernel. The αi is defined as dual coefficient and they are

upper-bounded by C.

Following the above binary classification and optimization equations, we can extend them

to solve multi-class classification and optimization problems. When the optimization problem

is resolved, the output of the decision function for a given observation x is derived as in Eq 16.

X

i2sv

yiaiKðxi; xÞ þ b ð16Þ
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Datasets and L-SVC model specifications

The description of the AE datasets, simulation environment, and utilized parameters in the

L-SVC model are presented in this section. Moreover, the performance of the proposed work

is analyzed based on several performance metrics.

Acoustic emission datasets

The AE corrosion datasets were acquired from the carbon-steel LPR test experimental sys-

tem. A single AE sensor was placed on a carbon-steel substrate for data collection. The AE

data was recorded every microsecond as waveforms for a duration of approximately 72

hours. Each waveform duration was 2 milliseconds and it represented a single measure-

ment (AE signal amplitude in voltage). The generation of AE waveforms mainly depends

on corrosion activity and predefined threshold. The threshold value was set at 25 dB in the

LPR test experiment. There is an inversely proportional relationship between corrosion

activity and waveform generation. Thus, the number of recorded waveforms may vary

every hour. The total duration of recorded AE data was categorized into three different lev-

els of corrosion based on the corrosion rate over a different time span and corrosion activ-

ity presented in Fig 9. “Region I” is defined as an initial level of corrosion whose duration is

between 1 to 17 hours. “Region II” and “Region III” are considered average and severe lev-

els of corrosion. Their duration is between 18 to 29 and 30 to 72 hours respectively. In

“Region I”, 435 waveforms were generated. Each waveform contains 2048 samples, for a

total of 890880 data samples. In “Region II”, 36 waveforms were recorded and a total of

73728 samples, whereas “Region III” contained 375 waveforms and a total of 768000 data

samples. The mass loss measured by corrosion rate for region I are decreasing from

1.4mm/yr down to 0.3mm/yr. The descending trend is a natural process by the metal dur-

ing building up an oxide layer at the beginning of immersion process. The mass loss at

Region II become stable compared to Region I, which are between 0.6 to 0.7 mm/yr. This

confirms the existence of temporary oxide layer form on the specimen after 17 hours.

Meanwhile, the increasing of corrosion rate observes in Region III from 0.7 to 1.3 mm/yr

indicates that the layer was ruptured due to the aggregative charge/ion transfer between

Fig 9. Categorization of severity levels of uniform corrosion.

https://doi.org/10.1371/journal.pone.0261040.g009
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electrolyte and the specimen. The raw AE data collected from all regions was denoised

based on the ND-SWT method and used to obtain feature datasets of three regions for our

machine learning model. The five-level WPT decomposition method was utilized to

decompose AE cleaned signals for all regions individually. Each region AE signal was

decomposed into two different types of packets called “approximation coefficient” and

“detail coefficient” in five-level generated total of 62 packets. Three statistical features and

two time-domain features were extracted from these 62 packets as shown in Fig 10. In

order to compute three frequency-domain features, each packet generated from WPT

decomposition was transformed based on the Fast Fourier Transform (FFT) as presented

in Fig 10 as well. The extracted features from three domains were formulated as a matrix

shaped (62 × 9) where a number of rows refers to samples and a number of columns pres-

ents AE features. Table 3 represents an example of a features set for a single region which is

utilized as an input dataset for our L-SVC model.

Fig 10. Feature extraction process of AE datasets for machine learning model.

https://doi.org/10.1371/journal.pone.0261040.g010
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L-SVC model simulation specifications

The L-SVC is a supervised machine learning model which is utilized as a multi-classes classifi-

cation framework for different levels of corrosion prediction in our work. The L-SVC model

has been implemented in the Python environment for training and testing performance evalu-

ation based on our input labelled dataset. There are 9 feature variables, each containing 62

samples, and 1 target variable which contains three different classes labelled as “Region I:1”,

“Region II:2” and “Region III:3” correspondingly. The input dataset is split into two parts, 70%

for training and 30% for testing. A summary of the L-SVC model specifications utilized for

simulation is listed in Table 4.

Results and discussion

The proposed feature extraction and classification approach has been implemented using the

scikit-learn framework in the Python anaconda environment and simulated using the LPR test

experimental corrosion dataset. The utilized corrosion dataset consists of three different levels

of corrosion and the combination of statistical, time-domain and frequency-domain features

for all classes are extracted based on our proposed feature extraction method. In this section,

we investigate the extracted feature correlation and the importance of the features in predict-

ing target variables based on the sum of input feature coefficients in order to make a predic-

tion. Moreover, we investigated the performance of the L-SVC multi-class classification model

and compared it with the performance of other well-known prediction models named Support

Vector Machine (SVM), Decision Tree (DT), Logistic Regression (LR) and Random Forest

Table 3. An example of AE features set of three domains for single region.

Features No. Time Domain Statistic Domain Frequency Domain

P2P (V) RMS (V) Mean Std. Skewness Kurtosis Mean Freq.(kHz) Mean Freq. P. (dB Angular Freq.(kHz)

1 0.11 0.4E-3 -0.4E-3 0.2E-2 -1.07 40. 80.76 -116.9 702.3

2 0.09 1.3E-7 0.1E-6 0.001 -0.02 240 80.76 -116.9 702.6

3 0.09 0.7E-3 -0.7E-3 2.8E-3 -0.90 18.4 59.86 -111.9 455.1

: : : : : : : : : :

62 .04 2.9E-7 0.2E-6 1.1E-3 2.6E-1 31.9 6.27 -100.9 64.90

https://doi.org/10.1371/journal.pone.0261040.t003

Table 4. A summary of L-SVC model specifications utilized for simulation.

Parameter Value

Input dataset 186 x 9

Model LinearSVC

Library SVM

Penalty l2

Loss squared_hinge

Dual False

Tolerance 1e−4

Regularization 1.0

Multi_class “ovr”

Max_iter 3000

Cross-validation 10-fold

Framework Scikit-learn

Environment Python 3.8 (Anaconda)

https://doi.org/10.1371/journal.pone.0261040.t004
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(RF). The performance evaluation is carried out based on various performance metrics listed

as follows:

Precision

The precision is computed by the ratio of predicted True Positive (TP) value of an individual

class and sum of the TP as well as False Positive (FP) of that particular class. The precision can

be defined as in Eq 17.

Precision ¼
ðTPÞ

ðTP þ FPÞ
ð17Þ

Recall

The recall is calculated by the ratio of TP prediction of one class and the sum of the TP predic-

tions of that particular class as well as False Negative (FN) of another class. The recall can be

formulated as follows:

Recall ¼
ðTPÞ

ðTP þ FNÞ
ð18Þ

F1-score

The F1-score is computed between 0 and 1 which is the harmonic mean of the precision and

recall. The F1-score can be defined as in Eq 19.

F1 � Score ¼
2� ðprecision� RecallÞ
ðPrecisionþ RecallÞ

ð19Þ

Accuracy

The accuracy is counted by the ratio of the sum of TP and TN predictions of all classes and the

sum of TP, FP, TN as well as FN of all classes. The accuracy can be formulated as in Eq 20.

Accuracy ¼
ðTPþ TNÞ

ðTP þ FPþ FN þ TNÞ
ð20Þ

Mean Absolute Error (MAE)

The MAE is calculated by finding the average of absolute difference between the actual values

and predicted values. It can be formulated as in Eq 21.

MAE ¼
1

n

Xn

i¼1

jActual values � Predicted valuesjð Þ ð21Þ

where n is the total number of actual or predicted values and i 2 {1, n}.

In order to investigate the performance of our incorporated L-SVC along with the bench-

marked classifiers more accurately, we compute 3x3 confusion matrix due to multi-class
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dataset used as model input which has been illustrated in Table 5. P, Q and R are referred to

the classes 1, 2 and 3 respectively. Using this matrix, the performance of each indicator (preci-

sion, recall, F1-score and accuracy) is calculated and later on, the results are compared. The

confusion matrix is a useful tool to investigate function clustering techniques and to classify

various classes of feature samples. In an ideal case, most of the feature samples are on the diag-

onal matrix and the rest of the matrix values are zero or near zero.

Result analysis

Fig 11(a) shows the specimen before the LPR. The surface of the specimen was smooth as the

surface finishing was done using sand blasting to remove any residue and defects. Later on, it

is compared with the specimen test area after the LPR test as shown in Fig 11(b). The uniform

corrosion was created during the LPR test where the metal surface was corroded in the form of

circular shape following the hollow tube shape. The corroded surface area can be clearly seen

despite any microscopic examination.

Fig 12 presents the features correlation matrix based on proposed feature extraction

approach. The high positive correlation among features represents low feature importance and

vice-versa. From this plot, it can be seen that the high correlation (close to 1.0) between statisti-

cal feature “mean” and frequency domain feature “angularFrq”. Thus, these features are less

important for prediction of corrosion severity levels. However, most of the feature correlations

are less than 0.25, which shows the effectiveness of appropriate feature selection for the

Table 5. Confusion matrix utilized in our study.

Actual

Classes P Q R

Predicted P TP- True P FP1- False P and True Q FP2- False P and True R

Q FQ1- False Q and True P TQ- True Q FQ2- False Q and True R

R FR1- False R and True P FR2- False R and True Q TR- True R

https://doi.org/10.1371/journal.pone.0261040.t005

Fig 11. Specimen sample before and after LPR test.

https://doi.org/10.1371/journal.pone.0261040.g011
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prediction model. The importance of the selected features is shown in Fig 13 which is plotted

based on the feature correlations among each. The vertical and horizontal lines present a num-

ber of features and correlation coefficient. The Analysis of Variance (ANOVA) of the extracted

features has been carried out and presented in Table 6.

Here, the most important features of three different classes are plotted to analyse the feature

discrimination among classes and the feature relationship on the corrosion process. Fig 14

presents the frequency-domain feature “mean frequency power”, which is the most important

feature among others. The vertical line shows the mean frequency power for three different

classes, and the horizontal line shows the number of feature samples for this particular feature.

It can be seen from this plot that the feature samples are well discriminated among the classes

and the feature samples of each class maintain a linear relationship with the corrosion process.

A similar trend follows in Fig 15 where the second most important time-domain feature

“peak-to-peak” for three classes of corrosion is visualized. Fig 16 shows the feature sample dis-

tribution of the third most important feature for three corrosion regions. Here, it can be

observed that the less effectiveness in discriminating feature samples among classes due to

high correlation among feature samples of different classes. However, there is still discrimina-

tion between “Region 1” and the other two regions, as well as a linear relationship between the

samples of each region of corrosion. Moreover, the significant feature-extraction can be

observed from the ANOVA test results where F-values decline the null hypothesis for both

cases, within the groups and between the groups. Furthermore, the significant results are

obtained for P-values that are less than the significance level (p-value< 0.05).

Based on our confusion matrix and above stated indicators’ formulas, the classification

results of an individual class for the utilized L-SVC model as well as other SVM, DT, LR, and

Fig 12. Feature heatmap of utilized AE dataset.

https://doi.org/10.1371/journal.pone.0261040.g012
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RF models are computed and stated in Table 7. The results are measured based on uniform

corrosion dataset that were prepared from the LPR test experimental AE data. The better per-

formance indicators listed in the table refers to the correctiveness of the prediction models. It

can be seen from the table that L-SVC outperforms the benchmarked models with respect to

the performance metrics. It achieves an average precision, recall, F1-score and AUC of 99.0%,

98.0%, 99.0% and 99.0% correspondingly. The main reason is that the L-SVC utilizes the ker-

nel-trick to solve dual problems and sets the hyperplane at an optimal margin for class separa-

tion. Moreover, it generalizes the data well due to the linear behavior of the corrosion dataset.

The DT model performs poorly for all indicators because this classifier is not well adapted to

small variations in the data and is unable to generalize the data for prediction. It can be con-

cluded that the L-SVC is more appropriate for the corrosion severity level prediction dataset

due to its memory efficiency and low computations.

Here, the performance of adopted L-SVC model as well as benchmarked classifiers are eval-

uated in terms of accuracy in training, testing, and cross-validation and associated errors.

Table 8 presents the results obtained by L-SVC and compares them with the results computed

by other benchmarked models. From the table, it can be seen that the L-SVC outperforms the

other benchmarked models with respect to prediction accuracy and associated false prediction

error. The L-SVC achieves the highest prediction accuracy of 99.0% along with the lowest false

prediction error of 0.01 due to well separation with optimal margin and well adapted to the

Fig 13. Feature importance of utilized AE dataset.

https://doi.org/10.1371/journal.pone.0261040.g013

Table 6. ANOVA test results for the extracted features.

Source of Variation SS DF MS F-value P-value F-crit

Within the groups 5.3E+11 185 2.8E+9 1.28 0.008 1.19

Between the groups 3.7E+12 8 4.6E+11 205.88 3.9E-234 1.94

Error 3.3E+12 1480 2.2E+9

Total 7.5E+12 1673

https://doi.org/10.1371/journal.pone.0261040.t006
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linear behavioral corrosion dataset. Thus, the L-SVC can be utilized for corrosion assessment,

which offers better accuracy for multi-class corrosion severity level prediction than other eval-

uated models.

In order to visualize the number of true predicted classes and false predicted classes utiliz-

ing the adopted classification model, the confusion matrices are computed for training and

testing feature samples. Fig 17 shows two confusion matrices generated during training and

testing samples based on the adopted L-SVC model. There are three actual and predicted clas-

ses (class: 1, 2 and 3) visualized in vertical and horizontal lines. The diagonal matrices repre-

sent the numbers of true predictions and the rest of the matrices present the false

classification. There is no false classification number seen in the confusion matrix for all classes

generated during training samples. However, even though there was a false prediction value in

Fig 14. Mean frequency power, frequency-domain features for three stages of corrosion.

https://doi.org/10.1371/journal.pone.0261040.g014

Fig 15. Peak-to-Peak (V), time-domain features for three stages of corrosion.

https://doi.org/10.1371/journal.pone.0261040.g015
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Fig 16. Standard deviation, statistical features for three stages of corrosion.

https://doi.org/10.1371/journal.pone.0261040.g016

Table 7. Classification performance comparison between adopted L-SVC and benchmarked models.

Performance Metrics Classes DT LR RF SVM L-SVC

Precision Region 1 0.64 1 0.85 0.93 1

Region 2 0.96 0.93 1 0.89 0.96

Region 3 0.46 1 0.78 1 1

Avg 0.69 0.98 0.88 0.93 0.99

Recall Region 1 0.26 1 0.81 1 1

Region 2 1 1 1 0.96 1

Region 3 0.77 0.91 0.82 0.81 0.95

Avg 0.68 0.97 0.88 0.93 0.98

F1-score Region 1 0.37 1 0.83 0.96 1

Region 2 0.98 0.96 1 0.92 0.98

Region 3 0.58 0.95 0.8 0.90 0.98

Avg 0.64 0.97 0.88 0.93 0.99

Actual Region 1 27 27 27 27 27

Region 2 26 26 26 26 26

Region 3 22 22 22 22 22

Total 75 75 75 75 75

Predicted Region 1 11 27 26 29 27

Region 2 27 28 26 28 27

Region 3 37 20 23 18 21

Total 75 75 75 75 75

AUC Region 1 1 1 0.93 1 1

Region 2 0.99 0.99 1 0.99 0.99

Region 3 1 1 0.92 1 1

Avg 0.99 0.99 0.95 0.99 0.99

https://doi.org/10.1371/journal.pone.0261040.t007
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the confusion matrix during testing samples, the true prediction rates were 100% for class 1

and 2. It can be concluded that the L-SVC model is able to identify different levels of corrosion

100% during training and close to 100% during prediction, which confirms the effectiveness of

the model in terms of corrosion severity level assessment.

Summary of the findings

The proposed approach consists of three modules: First, the LPR test experiment for AE corro-

sion signal acquisition and categorization of uniform corrosion severity levels. Second, AE cor-

rosion signal preprocessing and feature extraction for cleaning the various levels of corrosion

AE signals and extracting several domains of AE features. Third, the classification model for

predicting the severity level of corrosion based on our extracted feature dataset. The main find-

ings of this work are summarized as follows:

• The LPR test experiment has been conducted to record and investigate the uniform corro-

sion AE data. Afterwords, the categorization of severity levels of corrosion has been per-

formed based on the variation of corrosion rate over different time span and corrosion

activity presented in Fig 9.

• Three different domains of multiresolution corrosion features have been extracted utilizing

our new feature-extraction approach, WPT integrated with FFT, which is one of our main

contributions to this article. The importance of extracted features is analysed based on the

sum of coefficients for accurate prediction in Fig 13. An important feature can be considered

Table 8. Classification accuracy associated with error comparison between adopted L-SVC and benchmarked models.

Models Training Accuracy Testing Accuracy 10-Fold Cross Validation Accuracy MAE

DT 0.98 0.67 - 0.65

LR 1 0.97 - 0.03

RF 1 0.88 - 0.24

SVM 1 0.93 - 0.08

L-SVC 1 0.99 0.98 0.01

https://doi.org/10.1371/journal.pone.0261040.t008

Fig 17. Confusion matrix of the adopted L-SVC.

https://doi.org/10.1371/journal.pone.0261040.g017
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when one class of feature samples is highly dissimilar to other classes of feature samples. Our

feature-extraction approach can extract feature samples that vary from each other within the

class and are dissimilar among the classes.

• The mathematical formulation of our adopted classifier L-SVC and the designation of

L-SVC with the optimal parameters for our corrosion dataset have been carried out, which is

our other main contribution. A 10-folds training dataset is used for cross-validation and the

highest prediction accuracy of 99.0% is achieved compared to the benchmarked classifiers.

• The classification outcomes have been analysed based on various performance indicators.

Moreover, our adopted model outperforms the other evaluated models in terms of most of

the performance indicators which were observed.

Concluding remarks

Our analysis and findings confirm the fact that the proposed machine learning approach is

useful for uniform corrosion AE data acquisition, severity level assessment, multi-domains

feature extraction and corrosion severity level prediction for early warning systems. LPR test

experiments have been carried out on carbon-steel specimen to acquire different levels of

uniform corrosion AE data that can be utilized to develop corrosion monitoring and severity

estimation systems in various SHM applications. The WPT combined with the FFT decom-

position method has been incorporated for multi-domains feature extraction with high vari-

ation among feature samples within the class. The high variation of feature groups can help

classifiers predict appropriately with good accuracy. The L-SVC classification model has

been adopted for our linear behavioral feature-sets which can predict the various severity

levels of corrosion accurately. The ANOVA test results indicate the significance within and

between the feature-groups where F-values (F-value>1) rejects the null hypothesis and P-

values (P-value<0.05) are less than the significance level. The utilized L-SVC classifier

achieves higher prediction accuracy of 99.0% than the accuracy of other benchmarked classi-

fiers. The extension of this work will focus on various types of corrosion data acquisition

and more variety of feature extraction to get a large dataset for our adopted L-SVC model

performance evaluation.
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