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Abstract—Psychiatric disorders (PDs) interfere with one’s 

functioning and greatly affect a person’s quality of life. Prompt 

diagnosis and intervention at the early stages of these illnesses 

are important. However, most people are oblivious or unaware 

of their mental health status as the symptoms may not be easily 

recognizable. Consequently, complications occur later in life. In 

this study, a machine learning (ML) approach that distinguishes 

between case (PD-diagnosed patients) and control (healthy) 

groups was developed using photoplethysmogram (PPG) 

morphology. 92 subjects with gender and age-matched PPG 

data were collected during two phases; baseline and stimulus 

state of a 10-min experiment. 60 features from PPG morphology 

were extracted from each phase, and another 30 were obtained 

from differences between the two phases. A total of 27 out of 90 

features exhibited a significant difference. Twelve features 

extracted by heatmap based on the correlation analysis were fed 

to five types of ML algorithms: discrimination analysis, k-

nearest neighbor, decision tree, support vector machine, and 

artificial neural network (ANN). The results showed the best 

performance of 92.86%, 100.00%, and 96.43% for sensitivity, 

specificity, and accuracy by ANN. Thus, a PD prediction model 

was developed using machine learning techniques from PPG 

morphology extraction. 

Keywords—Bio signals, Statistical analysis, Correlation 

analysis, Machine learning   

I. INTRODUCTION  

Psychiatric disorders (PDs) are characterized by the 
disturbance of emotions, behavior and cognition, cause 
distress, and affect one’s functioning. PDs include major 
depression, bipolar disorder, schizophrenia, and anxiety 
disorder. Globally, the burden of PD continues to increase and 
has become a serious condition with a high prevalence (2018). 
Furthermore, in the wake of the SARS-CoV-2 pandemic in 
2019, restrictions and social detention around the world have 
had a severe impact on people’s mental health. Several studies 
have shown that the prevalence of community psychology and 
mental health increased during a pandemic compared to the 
previous year [1]. Until today, there was no consistent and 
reliable method to determine an individual’s mental health 
status. The main problem is because mental health does not 
only involve individual physical aspect but also involves 
individual social factors, culture, surroundings, and genetics. 

Apart from that, there are other disruptions like pressure, 
nutrition, prenatal infections and exposure to environmental 
hazards. It was reported that repetitive exposure to pressure 
can affect one’s physical and mental condition together with 
brain function [2]. People living in stressful environments are 
exposed to many disorders, such as anxiety or depression [3], 
[4]. Currently, screening questionnaires, such as the 
Depression Anxiety Stress Scale 21 (DASS-21) are used to 
measure depression, anxiety, and stress. However, in one 
study [5],  DASS-21 was found to fail discriminate between 
symptoms associated with depression and anxiety in certain 
communities. The final diagnosis of PD is based on clinical 
assessment and evaluation by clinicians based on diagnostic 
guidelines such as the Diagnostic and Statistical Manual of 
Mental Disorders and the International Classification of 
Diseases. However, the initial screening approach relies on 
patient honesty in self-report, which is also subjected to the 
individual’s self-awareness, memory, and sociocultural 
factors. In addition, most of the screening questionnaires used 
were for hospital-level research and studies only. There is no 
such mechanism for identifying individuals who with 
psychiatric disorders from a healthy population. Therefore, 
reliable diagnostic tools are needed that can easily and 
objectively assess and predict PD and that also take 
psychophysiology into account. 

Photoplethysmogram (PPG) is one of the bio-signal 
methods used in the assessment of autonomic nervous system 
dysfunction (ANS) in PDs [6]. The signals are closely related 
to vital signs such as heart rate (HR), respiratory and blood 
pressure, which can be used to measure oxygen saturation and 
cardiac output and to assess autonomic function [7]. PPG uses 
infrared light to estimate the movement of blood under the 
skin, and a signal is divided into two main points: systolic and 
diastolic. A PPG waveform cycle consists of the onset, 
systolic peak, dicrotic notch, and diastolic peak [8]. PPG 
signals can provide information about pulse rate variability 
(PRV) and blood pressure modulated by ANS. Therefore, 
PPG features can indicate the psychological status of a person. 
Recent studies show that PPG signals can detect individual 
stress levels, anxiety, and major depression disorders (MDD) 
by PRV [9–11]. In general, PD patients showed a lower 
response to PRV than healthy subjects during a given mental 
task [12]. For example, in a study [13] using PPG sensors, 
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patients with bipolar disorders were found to have lower PRV 
in the manic state than in the euthymic state. Another study 
[14] found that there were significant differences in cardiac 
function when studying PD patients and healthy controls 
during long-term continuous physical activity monitoring. In 
another study [15], the PPG signal was used to analyze PRV 
differences between schizophrenia patients and healthy 
individuals by an auditory stimulus test and found that PRV 
was lower in patients than in control subjects. Finally, studies 
by [16] found a positive theoretical relationship between 
mental health and the PPG pulse waveform. Preliminary 
results of the study [10] also suggest that PPG can be a 
promising emotion recognition tool and is suitable for human-
machine interaction applications.  

Despite all these findings, it remains difficult to treat 
patients with early-stage mental health problems because of a 
lack of reliable and consistent outcomes. The development of 
rapid and reliable automated screening methods is needed to 
refer at-risk patients to a psychiatrist or psychologist for 
further treatment. Machine learning (ML) is a very useful tool 
in healthcare, especially in implementing the internet of things 
[17]. Pattern recognition algorithms can be used to develop 
predictive models for certain diseases and can help with timely 
diagnoses, such as in studies [18]. Algorithms commonly used 
in ML are discriminant analysis (DA), k-nearest neighbors 
(KNNs), decision trees (DTs), support vector machines 
(SVMs), and artificial neural networks (ANNs), which predict 
and classify future events. In this paper, we aimed to predict 
PD from PPG signals by analyzing a case-control group on the 
basis of the reactivity of ANSs by using the mentioned ML 
algorithms. 

II. MATERIALS AND METHODS 

The experimental paradigm consisted of five phases 
which are (1) data and PPG signal acquisition; (2) pre-
processing and selection of a signal with good quality; (3) 
fiducial point detection from PPG signal followed by feature 
extraction; (4) feature selection based on significant p-value 
from statistical analysis and correlation analysis; and (5) the 
inputs of the most significant features to the ML process for 
the model prediction using a classifier with the best 
performance in terms of sensitivity (SN), specificity (SP) and 
accuracy (ACC). 

A. Data Acquisition 

The data acquisition for this study included participant 
demographic information and recordings of PPG signals. 
Sample size was calculated with the nomogram proposed by 
Gore and Altman, and the estimated prevalence rate of stress 
among Malaysians during the COVID-19 pandemic was 29% 
(P) [19]. This study targeted 95% for SN with a confidence 
interval (W) of 0.083. the estimated total number of samples 
was 92 and thus 46 subjects were included in each case and 
control group. 

A total of 46 individuals met the criteria for the case group, 
currently having PDs and were recruited for this study. Their 
mean age was 24.76 (SD=5.43). All of them were patients 
admitted to the psychiatry clinic of Hospital Canselor Tuanku 
Muhriz (HCTM), Kuala Lumpur. They were clinically 
diagnosed with anxiety disorder (n = 13), depression (n = 20), 
both (n = 5), and schizophrenia (n = 8). The subjects were not 
assessed through DASS-21 as they had been clinically 
diagnosed. Then, 46 gender and age-matched normal subjects 
with a mean age of 23.80 (SD = 6.02) as the control 

participants were recruited from university students and 
members of the public who passed pre-screening through 
DASS-21. The age range for inclusion was 18-40 years. 
Informed written consent was obtained from all subjects, who 
were screened for any history of chronic medical conditions 
through verbal questioning. The exclusion criteria were 
currently having cardiovascular diseases and smoking, which 
may affect the PPG signals.  

A pulse oximeter (CMS50E, Contec Medical Systems Co., 
Ltd., China) with a sampling frequency of 100 Hz was put on 
the index finger of each subject's left hand for PPG signal 
recording. The study protocol consisted of two sessions: the 
baseline (T1) and stimulus state (T2). The sessions were 
designed to evaluate differences between the case and control 
groups concerning the reactivity of their ANSs. In the T1 
session, subjects’ PPG signals were recorded under rested and 
relaxed conditions. In the second session, subjects underwent 
a Stroop color test. According to a 1935 study, the Stroop test 
is useful as a cognitive stress test and can elicit high levels of 
physiological stimulation [20]. Subjects took longer to read 
words printed in a different color than they did to read the 
same words printed in black. This approach is similar to 
previous research that used stimuli to detect changes in the 
ANS [21–22]. The total time for data recording was 10 min. 
Once PPG signal recording was completed, data was stored 
using the Smart Device Assistant, SpO2 software, for further 
analysis. 

B. Pre-processing 

A second order butterworth high-pass filter with a cut-off 
frequency of 0.5 Hz, and a first order butterworth low-pass 
filter with a cut-off frequency of 6 Hz were used [23]. 
Following that, signal quality indexing (SQI) is used to 
establish trustworthy signal stability. The length of a quality 
PPG signal segment is determined by the SQI procedure. The 
SQI algorithm employed is based on the raw signal quality of 
PPG and employs a template-matching technique as proposed 
by prior works [24–25]. The SQI process is governed by three 
conditions: the extrapolated 10-second PPG signal must be 
between 40 bpm and 180 bpm; the PPG pulse-peak gap must 
not exceed 3 seconds to avoid missing more than one beat; and 
the maximum and minimum beat-to-beat interval within a 
sample must be less than 2.2. For feature extraction, only high-
quality signals will be processed. This process is performed 
using MATLAB (Mathworks Inc., USA). 

C. Feature Extraction 

Peak position, mean of peak-to-peak intervals calculated 
over the analyzed segment, beats per minute (HR algorithms), 
and common heart rate variability (HRV) are the four 
variables involved to measure the performance of PRV 
features. For example, HR is calculated using the time 
interval between two successive peaks and a common PRV 
measure using the standard deviation of the successive 
differences. The calculated measures in the frequency domain 
are the low-frequency (LF) frequency spectrum between 
0.05-0.15 Hz and the high-frequency (HF) frequency 
spectrum between 0.15-0.5 Hz. The measures are calculated 
from the power spectral density, which in turn is estimated 
using welch-based methods. The high performance of the 
algorithm has been reported in a study [26]. 

In addition, the association between other features of the 
PPG waveform was investigates, as this could lead to more 
diagnostic features and improve the of PDs because of the 
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great potential of this signal. The delineator [27] and 
bp_annotate [28] methods algorithms have been applied to 
detect the fiducial points in the PPG signals. The 
determination of pulse onset was related to the zero-crossing 
point before maximal diffraction was used to determine pulse 
start and the systolic peak was defined as the zero-crossing 
point following diffraction [27]. MATLAB was used in 
detecting these fiducial points in the PPG signal. As shown in 
Fig. 1, the raw PPG signal with the fiducial point where O is 
onset, S is systolic, N is a notch, D is diastolic, and i is the 
sequence of a cycle. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Fiducial points in PPG or points of interest are identified on the pulse 
wave.  

In total, ten HR/PRV features and twenty PPG pulse 
fiducial point detection features were obtained (see Table 1).  

TABLE I.  FEATURES AND LABELS COVERED BY THE STUDY 

Features Label Details 

HR BPM, 
IBI 

beats per minute, mean inter-beat interval 

PRV SDNN, 
SDSD, 
RMSSD, 
PNN20, 
PNN50, 
MAD, 
HF,  
LF 

standard deviation of intervals between heart 
beats, standard deviation of successive 
differences between neighboring heart beats 
intervals, the root mean square of successive 
differences between neighboring heart beat 
intervals, proportion of differences between 
successive heart beats greater than 20ms, 
proportion of differences between successive 
heart beats greater than 50ms, and median 
absolute deviation of intervals between heart 
beats, high frequency, low frequency. 

Onset OiOi+1, 
OiSi, 
OiNi, 
OiDi,  
Oi–Si, 
Oi–Ni, 
Oi–Di 

Time domain: Onseti to Onseti+1, Onseti to 
Systolici, Onseti to Notchi, Onseti to Diastolici, 
Apmplitude Domain: Onseti–Systolici, Onseti–
Notchi, Onseti–Diastolici 

Systolic SiSi+1, 
SiOi+1, 
SiNi, 
SiDi,  
Si–Ni 

Time domain: Systolici to Systolici+1, Systolici 

to Onseti+1, Systolici to Notchi, Systolici to 
Diastolici, Amplitude Domain: Systolic –Notchi 

Notch NiNi+1, 
NiSi+1, 
NiOi+1, 
NiDi 

Time domain: Notchi to Notchi+1, Notchi to 
Systolici+1, Notchi to Onseti+1, Notchi to 
Diastolici 

Diastolic DiDi+1, 
DiOi+1, 
DiSi+1, 
DiNi+1 

Time domain: Diastolici to Diastolici+1, 
Diastolici to Onseti+1, Diastolici to Systolici+1, 
Diastolici to Notchi+1 

 

D. Statistical Analysis and Feature Selection 

Statistical analysis was performed using IBM SPSS 
Statistical Version 26. Shapiro-Wilk test (p>0.05) and 
skewness and kurtosis (2.0<p<2.0) were performed for 
normality assumption test [29]. Independent t-test was 
performed for the normal distribution feature, while the 
Mann-Whitney U test was performed for the abnormal 
distribution feature. The features were then sorted according 
to the smallest to highest p-value, with a 95% confidence 
interval. Interquartile range assessment was used on potential 
features for isolated variability assessment. Significant 
features based on (p<0.05) were compared for the correlation 
analysis. Heat maps were used in finding features that were 
highly connected to a target and ensuring that no connections 
occurred between features. Feature selection primarily 
focused removing uninformed or redundant predictors from a 
model [30]. 

E. Classification 

Five conventional ML models, DA, KNN, DT, SVM, and 
ANN have been utilized to differentiate case and control 
group data. Linear and quadratic types from a DA algorithm 
are used because DA is fast and can provide accurate 
discrimination between groups [31]. A KNN algorithm can 
determine the minimum distance (euclidean) of test and 
training data and categorize features with different numbers 
of neighbors, k value is set from 1 to 100. A DT classifier is 
used to produce "true" or "false" responses to training data 
with Gini’s diversity index splitting criterion, and the number 
of splits is set from 1 to 100. An SVM algorithm is used to 
create decision boundaries (hyperplane) that can differentiate 
two groups using the four different kernel functions of linear, 
radial basis, and third- and fourth-order polynomial 
functions. In ANNs, a multilayer perceptron network is 
developed with two hidden layers and one output layer. The 
number of hidden nodes varied from 1 node to 15 nodes at 
each hidden layer. The network is trained with Levenberg-
Marquardt training algorithm, the 'log sig' transfer function 
(hidden layers), the 'purelin' transfer function (output layer), 
and a training goal of 1 x 10-7 mean squared error (MSE). 

These ML models are trained based on training and 
testing data groups, which are randomly divided and stratified 
according to a group with a division ratio of 70:30 (training 
and testing, respectively). Each ML model is fed with 
increasing number of features, from the least p-value to the 
highest one. The target is set in a binary of "0" and "1" for the 
control and case groups, respectively. The training is 
validated using a five-fold cross-validation algorithm. Then, 
model performance is compared in terms of MSE, SN, SP, 
ACC and receiver operating characteristic curves (ROC) 
analysis. In ROC, the false positive rate and true positive rate 
of the trained models were recorded with discrimination 
thresholds varying from 0 to 1. The area under the ROC curve 
was compared, and an area under the curve (AUC) value 
closer to 1 indicated a good predictor model [32]. The details 
of the performance evaluators are shown in (1-4): 

 SN  = TP/(TP + FN) (1) 

 SP  = TN/(TN + FP) (2) 

 ACC  = (TP + TN)/(TP + FP + FN + TN) (3) 
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where TP = number of PD accurately detected as the case 
group, TN = number of healthy controls accurately identified 
as the control group, FN = number of PD inaccurately 
detected as the control group, and FP = number of healthy 
controls inaccurately detected as the case group. While the 
AUC of the ROC curve is given by, 

 AUC = � ROC(t) dt
1

0
 (4) 

where t = (1 – specificity) and the ROC(t) is sensitivity. 
 
The study was approved by the Research and Ethics 

Committee of HCTM, with a registration number of 
UKM.PPI/111/8/JEP-2021-322. 

III. RESULTS  

A. Data Acquisition 

Table 2 shows a summary of participant characteristics, 
including sex, age, height, weight, BMI, and Stroop test 
accuracy. The control group included 16 males and 30 
females (34.8% and 65.2%, respectively) with an average age 
of 23.8 years. The case group included 16 males and 30 
females, with a mean age of 24.76 years. The number of 
female participants was higher than that of males because the 
prevalence of mental illness was higher in women than in 
men [33]. The statistical characteristics using Levene's Test 
for Equality of Variances showed no significant differences 
between the two groups regarding gender (p = 1.00), age (p = 
0.491), BMI (p = 0.366), and Stroop test accuracy (p = 0.640). 

TABLE II.  SUBJECT DEMOGRAPHIC AND CHARACTERISTICS (N = 92) 

Characteristics 
Label 

P Features control 

(N=46) 
Case (N=46) 

Gender, male 16  16 1.00 

Age 23.80 (6.02) 24.76 (5.43) 0.491 

BMI (kg/m2) 23.49 (5.29) 24.20 (7.79) 0.366 

ST Accuracy 96.10 (14.47) 93.99 (11.71) 0.640 

B. Pre-processing 

Once the PPG signal is filtered, the signal is subjected to 
a SQI process to determine a reliable signal. In Fig. 2, poor-
quality PPG signal is highlighted in red color, and good-
quality signal is indicated in blue color. The SQI is one of the 
artefact detection algorithms aimed at assessing the quality of 
physiological data [34]. 

 
 
 
 
 
 
 

Fig. 2. PPG signals with low quality are red, while those with high quality 
are blue. 

C. Feature Extraction 

In this study, 60 features were extracted with the PPG 
signal from the subject’s left hand based on the T1 and T2 

tasks. HR and PRV features were extracted using Python, 
whereas other features from fiducial point detection (onset, 
systolic, notch, and diastolic) were extracted with MATLAB. 
These features were divided as follows: 48 from the time 
domain, four from the frequency domain, and eight from the 
amplitude domain. The features would be evaluated 
according to T1 and T2 for the discrimination between the 
case and control groups. Another 30 features were obtained 
from changes in features between T1 and T2. These features 
were extracted and used in assessing the effects of changes 
before and during subjects experienced a stimulus state, 
which is described as T3. 

D. Statistical Analysis and Feature Selection 

The rank of p-value in descriptive statistics was applied 
by analyzing the mean values for each feature. Table 3 shows 
that among the 90 features, 27 features with significant 
differences (p-values<0.05) were identified. The significant 
features were as follows: 13 of T1, 6 of T2, and 8 of T3. These 
features were ranked from the smallest to the largest 
according to the tasks.  

TABLE III.  SIGNIFICANT FEATURES ARE RANKED BY P-VALUE IN 

STATISTICAL ANALYSES FROM SMALLEST TO LARGEST 

No Feature p-value Task 

1 NiOi+1_T1 <0.05 

T1 

2 HF_T1 <0.05 

3 MAD_T1 <0.05 

4 PNN50_T1 <0.05 

5 LF_T1 <0.05 

6 SiO i+1_T1 <0.05 

7 PNN20_T1 <0.05 

8 OiO i+1_T1 <0.05 

9 SDNN_T1 <0.05 

10 BPM_T1 0.001 

11 IBI_T1 0.001 

12 NiN i+1_T1 0.003 

13 NiS i+1_T1 0.007 

14 NiO i+1_T2 <0.05 

T2 

15 MAD_T2 0.001 

16 PNN50_T2 0.002 

17 HF_T2 0.012 

18 PNN20_T2 0.014 

19 SDNN_T2 0.023 

20 LF_T3 0.001 

T4 

21 NiDi_T3 0.005 

22 SiOi+1_T3 0.006 

23 HF_T3 0.011 

24 IBI_T3 0.018 

25 DiNi_T3 0.024 
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26 BPM_T3 0.042 

27 PNN20_T3 0.044 

 
Next, the significant features were validated through 

correlation analysis. Fig. 3 through Fig. 5 shows the heat map 
of the correlation matrix and correlation strength (absolute 
value of the correlation coefficient, |r|) for the features from 
T1, T2, and T3. Based on the heat map, it was found that there 
are features that are highly correlated with each other and 
have similar information. If both are selected as ML inputs, 
the complexity of ML training increases, and ML 
performance is affected. Therefore, features that are highly 
correlated with each other will be discarded. Only features 
that are related to the group will be included in the ML.  

In T1, PNN20 was removed as it had a high correlation 
(correlation |r| > 0.8) with PNN50 and MAD. SiOi+1, BPM, 
IBI, and NiSi+1 were highly correlated to one another given 
that most measurements were close and consistent to a pulse 
measurement. Only the SiOi+1 feature was selected as it had 
the least p-value and highest correlation strength. OiOi+1 
BPM, IBI, and NiSi+1 features were removed. Correlation 
strength for T1 was in accordance with the p-value, and the 
least p-value feature had the highest correlation strength. This 
finding was also found in T2.  

In T2, most features had a low correlation strength to their 
groups, except for the NiOi+1 feature. PNN20 and SDNN were 
removed in the analysis as they were highly correlated to 
PNN50. Compared with the features in T1 and T2, the 
features in T3 had the least correlation strength to the groups, 
with a mean of 0.24 ± 0.0639. This result suggested that 
changes in the parameters measured from T1 to T2 had 
negligible differences from those in the control and case 
groups, as their correlations were weak. Thus, the features 
from T3 were excluded from the study.  

 

 

 

Fig. 3. (a) Correlation matrix of T1. (b) Correlation strength of T1. 

 

 

Fig. 4. (a) Correlation matrix of T2. (b) Correlation strength of T2. 

 

 

Fig. 5. (a) Correlation matrix of T3. (b) Correlation strength of T3. 

Eight best features from T1 and four best features from 
T2 were used as mutual features in determining whether 
classification performance can be improved. Correlation 
matrix for the mutual features known as T4 is shown in Fig. 
6. 

 

(a) 

(b) 

(a) 

(b) 

(a) 

(b) 

Authorized licensed use limited to: Universiti Kebangsaan Malaysia. Downloaded on February 16,2023 at 08:53:04 UTC from IEEE Xplore.  Restrictions apply. 



 

 

Fig. 6. (a) Correlation matrix of T4. (b) Correlation strength of T4. 

No feature was correlated with a correlation strength of 
more than 0.8. Thus, all features are applied to classification. 
The average correlation strength of all 12 features was the 
highest (0.3925 ± 0.0817). The final list of the best features 
for T1, T2, and T4 is provided in Table 4. These features were 
used for classification using five ML techniques. 

TABLE IV.  SELECTED FEATURES AFTER CORRELATION ANALYSIS 

Task Selected Features 

T1 
NiOi+1_T1, HF_T1, MAD_T1, PNN50_T1, LF_T1, SiOi+1_T1, 
SDNN_T1, NiNi+1_T1 

T2 NiOi+1_T2, MAD_T2, PNN50_T2, HF_T2 

T4 
NiOi+1_T1, HF_T1, NiOi+1_T2, MAD_T1, PNN50_T1, LF_T1, 
SiOi+1_T1, SDNN_T1, MAD_T2, PNN50_T2, NiNi+1_T1, 
HF_T2 

E. Classification 

Five different ML models are developed to classify case 
and control subjects using the selected features of T1, T2, and 
T4. Each model was trained with increasing input numbers, 
started from the least p-value, and randomly divided into 
trained and test data. The same random values were selected 
for each task. The accuracy of the best-trained models for 
each ML with different numbers of features is shown in Fig. 
7. In general, ANN and KNN showed the best performance 
in T1 classification. KNN produced the highest accuracy 
(96.43%) in four features: NiOi+1_T1, HF_T1, MAD_T1, and 
PNN50_T1.  

 

 

 

 

Fig. 7. Classification performance with an increasing number of 
features for (a) T1, (b) T2, and (c) T4, for each ML. 

In T2 classification, the highest accuracy of KNN with 
seven neighbors and linear SVM and ANN with hidden nodes 
of nine and five was up to 89.29% when NiOi+1_T2, 
MAD_T2, and PNN50_T2 were used. Meanwhile, ML of T4 
has able to achieve the same accuracy as T1 using ANN 
(hidden nodes = 11 at both hidden layers) with three features 
of NiOi+1_T1, HF_T1 and NiOi+1_T2. The sensitivity 
(92.86%) of the ANN model and its AUC (0.9949) are the 
highest as compared to KNN in T1 classification. The ROC 
curves and performance of the best trained model for each 
ML in T1, T2 and T4 classification are shown in Fig. 8 and 
Table 5, respectively.  

 

 

(a) 

(b) 

(c) 

(a) 

(b) 

(a) 
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Fig. 8. ROC curves of the best trained model for each ML classification 
of a) T1, b) T2, and c) T4. 

TABLE V.  EACH ML HAD THE BEST TRAINED MODEL CLASSIFICATION 

PERFORMANCE IN T1, T2, AND T4 

ML DA KNN DT SVM ANN 

Task T1 (N=8) 

Trained 
features 

1 4 7 2 2 

ML Setting 
Type= 
Linear 

k=1 Split=1 
Kernel= 
3rd order 

Polynomial 

HN1=5 
HN2=8 

Val MSE 0.250 0.308 0.231 0.154 0.154 

Val ACC 75.00 69.23 76.92 84.62 84.62 

Test MSE 0.107 0.036 0.108 0.071 0.071 

%Test SN 92.86 92.86 85.71 92.86 92.86 

%Test SP 85.71 100.0 92.86 92.86 92.86 

%Test 
ACC 

89.29 96.43 89.29 92.86 92.86 

AUC 0.941 0.964 0.870 0.918 0.949 

Task T2 (N=4) 

Trained 
features 

1 3 3 1 3 

ML Setting 
Type= 
Linear 

k=7 Split=1 
Kernel= 
Linear 

HN1=9 
HN2=5 

Val MSE 0.417 0.154 0.500 0.385 0.308 

Val ACC 58.33 84.62 50.00 61.54 69.23 

Test MSE 0.214 0.179 0.250 0.214 0.107 

%Test SN 100.0 92.86 92.86 100.0 78.57 

%Test SP 57.14 71.43 57.14 57.14 100.0 

%Test 
ACC 

78.57 82.14 75.00 78.57 89.29 

AUC 0.804 0.842 0.776 0.804 0.954 

Task T4(N=12) 

Trained 
features 

1 4 1 2 3 

ML Setting 
Type= 
Linear 

k=10 Split=1 
Kernel= 
3rd order 

Polynomial 

HN1=11 
HN2=11 

Val MSE 0.250 0.154 0.077 0.154 0.154 

Val ACC 75.00 84.62 92.31 84.62 84.62 

Test MSE 0.107 0.036 0.143 0.071 0.036 

%Test SN 92.86 92.86 85.71 92.86 92.86 

%Test SP 85.71 100.0 85.71 92.86 100.0 

%Test 
ACC 

89.29 96.43 85.71 92.86 96.43 

AUC 0.941 0.982 0.908 0.918 0.995 

IV. DISCUSSIONS 

The current study found that PPG features measured 
during T1 and T2 distinguished patients with PD from 
healthy controls, suggesting that PPG features are biomarkers 
for PD.  We used an experimental protocol that included T1 
and T2 to extract PPG features that responded to ANS activity 
and determined whether data from PPG signals can predict 
current PD during the stimulus period. In the physical 
assessments, the participants had similar mean values for 
gender, age, BMI, and cognitive level. The Stroop test 
confirmed that measures of attention, skill capacity, and 
processing speed ability did not differ between the case and 
control groups. All subjects in this study had almost the same 
cognitive level.  

For the selection of features from a PPG signal, the 
correlation matrix showed that four out of the 27 features had 
high significance. NiOi+1, MAD, and PNN50 from the time 
domain and HF from the frequency domain, which had the 
lowest p-value and the highest correlation strength for the 
classification group. Additionally, all these features had 
lower mean values in the case group than in the control group. 
These results were consistent with previous studies [35], in 
which the PRV feature of depressed patients were lower than 
those of healthy people. NiOi+1 is a potential feature for 
assessing stress influenced by changes in cardiovascular 
properties [36]. Moreover, PRV features (MAD, PNN50, and 
HF) are associated with ANS and respiration and may serve 
as the markers of pathological conditions in mental health 
[16], [37–39]. It has been used in previous studies related to 
anxiety [40], depression [41] and bipolar disorder [12]. Thus, 
by consolidating all the important features into T4, it can 
increase ability to predict PD.  

The measure for feature changes (T3) from T1 to T2 was 
insignificant in terms of the strength of correlation to a group, 
suggesting no significant difference between the relaxed and 
stimulated states in both groups. These results were not 
consistent with previous studies in which significant 
differences in the stress task with respect to the relaxation 
state from healthy people only were observed [42]. The 
possible reason was the low level of stimulation, which may 
have induced participants to stress at a lower level. Other 
factors, such as the complex human response system to stress, 
should be considered as they vary between individuals. 
Therefore, the relationship of PPG features with various 
stress stimuli can be further studied. 

PD was better predicted in T1 than in T2. The results were 
consistent with previous studies, where more significant 
differences in relaxation and recovery tasks than in a 
stimulated state, T2 [43]. The task may help differentiate 
responses in ANS activity between case and control groups. 
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Table 6 shows a comparison of performance between MLs 
that have been used in studies related to mental health. The 
best performance of the ML model in this study was observed 
in ANN with SN of 92.86%, SP of 100%, and ACC of 
96.43%. The model used three combined features of 
NiOi+1_T1, HF_T1 and NiOi+1_T2. The performance of this 
study was higher than that reported in other studies. 

TABLE VI.  COMPARISONS WITH RELATED WORKS IN TERMS OF SN, SP 

AND ACC 

Study Method Focus Signal Performance 

[44] SVM 

Major 
Depressive 
Disorder 

EDA 

SN = 70% 

SP = 71% 

ACC = 70% 

[45] 
SVM-
RFE 

Major 
Depressive 
Disorder 

EDA 

SN = 74% 

SP = 71% 

ACC = 74% 

[46] KNN Depression EEG 

SN (NA) 

SP (NA) 

ACC = 79.27% 

[12] SVM 
Mental 

Disorder 
ECG, 
PPG 

SN = 71.40% 

SP = 93.80% 

ACC = 87% 

Proposed 

Method 
ANN 

Psychiatric 

Disorder 
PPG 

SN = 92.86% 

SP = 100% 

ACC = 96.43% 

V. CONCLUSION 

Direct comparisons with PD classifications are relatively 
difficult because the development of predictive models 
mostly uses different bio signals, questionnaires, and social 
lifestyle information as inputs. PD classification using PPG 
signals is rarely reported. KNN produced comparable results 
to ANN because of its capability to handle noisy instances. 
An SVM algorithm was not fully optimized to minimize the 
classification error, as the c hyperparameter did not vary. DT 
performed better on mutually exclusive classes, but the data 
did not. DA required a normal distribution assumption on 
features, but about one-third of the total features were not 
normally distributed. 

The limitation to this study was that it did not further 
classify PPG signals by PD type. This study included only a 
few categories of PD, which may not be optimal and reduces 
the variance of the classification measurements. Future work 
is needed to emphasize the collection of PPG signals to 
provide reliable SN, SP, and ACC classifications. This study 
shows that ANN provides 92.86% sensitivity, 100.00% 
specificity, and 96.43% accuracy compared with other ML 
models. Therefore, a PD prediction model was developed 
using ML techniques from PPG morphological extraction. 
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